	NADAR SARASWATH	HI COLLEGE OF ENGINEERING AND TECH	HNOLOGY	, THENI.			
Cou	rse/Branch : B.E / ECE	Year / Semester : III / V	Format No.	NAC/TLP-	07a.13		
Sub	ject Code : EC8553	Subject Name : Discrete Time Signal Processing	Rev. No.	02			
Unit	: No : 2	Unit Name : Infinite Impulse Response Filter	Date	30.09.2020			
L		OBJECTIVE TYPE QUESTION BANK	I	I			
S. No.	Objective (Questions (MCQ /True or False / Fill up with Ch	noices)		BTL		
	When the frequency band the pre filter, which is als a) Analog filter	is selected we can specify the sampling rate and t o called as filter?	he characte	ristics of			
1.	b) Anti aliasing filter c) Both a& b d) None of the mentioned						
	Answer: b	Learn					
2.	 What are the main character a) Ensures that bandwidth c b) To limit the additive nois c) Both a& b d) None of the mentioned Answer: c 	ristics of Anti aliasing filter? f signal to be sampled is limited to frequency range. e spectrum and other interference, which corrupts the s	signal.		L2		
3.	In general, a digital syste processing system than an system. a) True b) False Answer: a	n designer has better control of tolerances in a dig 1 analog system designer who is designing an equi	ital signal valent analo	og	L4		
4.	The selection o f the same determines the highest frequency (Fs factor that influences the design a) True b) False Answer: a	pling rate Fs=1/T, where T is the sampling interval /2) that is preserved in the analog signal, but also s specifications for digital filters	l, not only serves as a s	scale	L5		

Prepared By: Mrs.T.TAMIL SELVI

	NADAR SARASWATI	II COLLEGE OF ENGINEERING AND TEC	HNOLOGY	(, THENI.				
Cou	rse/Branch : B.E / ECE	Year / Semester : III / V	Format No.	NAC/TLP-07a.13				
Sub	ject Code : EC8553	Subject Name : Discrete Time Signal Processing	Rev. No.	02				
Unit	: No : 2	Unit Name : Infinite Impulse Response Filter	Date	30.09.2020				
		OBJECTIVE TYPE QUESTION BANK						
	What is the configuration a) Analog signal Pre-filt filter	of system for digital processing of an analog sign er ->D/A Converter -> Digital Processor -> A/D C	al? Converter ->	Post-				
5.	b) Analog signal Pre-filter ->A/D Converter -> Digital Processor -> D/A Converter -> Post-filter L1 c) Analog signal Post-filter ->D/A Converter -> Digital Processor -> A/D Converter -> Pre-filter L1 d) None of the mentioned Digital Processor -> A/D Converter -> Pre-filter							
6.	In DM, further the two in comparator, and then suc a) System-delta modulation b) Sigma-delta modulation c) Source-delta modulation d) None of the mentioned Answer: b	egrators at encode are replaced by one integrator a system is called? on n n beellence for Empowerment n	placed befo	re L1				
7.	In IIR Filter design by the from a) Z-plane to S-plane b) S-plane to Z-plane c) S-plane to J-plane d) J-plane to Z-plane <u>Answer: b</u> it is clear that transformer	Bilinear Transformation, the Bilinear Transform	ation is a ma	apping L2				
8.	 In Bilinear Transforma 	tion, aliasing of frequency components is been av	oided.	L1				

a		III COLLEGE OF ENGINEERING AND TECH	Eormot			
Cou	rse/Branch : B.E / ECE	Year / Semester : III / V	No.	NAC/TLP-0)7a.13	
Subj	ject Code : EC8553	Subject Name : Discrete Time Signal Processing	Rev. No.	02		
Unit	: No : 2	Unit Name : Infinite Impulse Response Filter	Date	30.09.2020		
		OBJECTIVE TYPE QUESTION BANK				
	a) True					
	b) False					
	Answer: a					
	Is IIR Filter design by B other	linear Transformation is the advanced technique w	hen compa	red to		
0	design techniques?				T 1	
9.	a) True				LI	
	b) False	Learn al-				
	Answer: True	pation mapping, which of the following are correct	?			
	In the Difficult Transform	mation mapping, which of the following are correct				
	a) All points in the LHP	of s are mapped inside the unit circle in the z-plane	•			
	b) All points in the RHP of s are mapped outside the unit circle in the z-plane					
10.		M			L3	
	c) Both a & b	sering excentione for empowerment				
	d) None of the mentione	d 💦 🚽				
	Answer: C	Concentrathi College	3.			
	The lower and upper lim	its on the convolution sum reflect the causality and	finite dura	tion		
	characteristics of the filt	epering & Technolog	V			
11		icoring a rounnoing	7		10	
11.	a) True				L2	
	b) False					
	Answer: a					
	In tapped delay line filte	r, the tapped line is also known as				
12					τэ	
12.	a. Pick-on node				LĴ	
	b. Pick-off node					

Cou	rse/Branch : B.E / ECE	Year / Semester :	III / V	Format	NAC/TLP-07a
Subi	iect Code : EC8553	Subject Name :	Discrete Time Signal Processing	No.	02
Unit	No : 2	Unit Name : Infi	nite Impulse Response Filter	Date	30.09.2020
		OBJECTIVE T	YPE QUESTION BANK		
	c. Pick-up node				
	d. Pick-down node				
	ANSWER:(b) Pick-off n	ode			
	How is the sensitivity of	filter coefficient qu	antization for FIR filters?		
	a. Low				
	h Moderate				
13.	0. Widderate				L
	c. High		in the second		
	d. Unpredictable	15 1			
	ANSWER: (a) Low		20 8 000		
	Anti-imaging filter with	ut-off frequency ω	$c = \pi / I$ is specifically used	upsan	npling
	process for the removal of	r unwanted images			
		ering Excellen	ce tar Empowerment		
	a. Before		-		
	h At the time of	Canany	athi Callaga	3.	
14.	o. At the time of	091.92M	ann consde	u	L
	c. After		and a second sec		
	- nnin	oorinn	S Torhaning	v	
	d. All of the above	eering	& Technolog	у	
	d. All of the above	eering	& Technolog	у	
	d. All of the above	eering	& Technolog	У	
	d. All of the above ANSWER: (c) After Which of the following i	a frequency doma	in specification?	У	
	d. All of the above ANSWER: (c) After Which of the following i a) $0 > 20 \log H(i\Omega) $	a frequency doma	in specification?	У	
	d. All of the above ANSWER: (c) After Which of the following i a) $0 \ge 20 \log H(j\Omega) $	a frequency doma	in specification?	У	
15.	d. All of the above ANSWER: (c) After Which of the following i a) $0 \ge 20 \log H(j\Omega) $ b) $20 \log H(j\Omega) \ge KP$	a frequency doma	in specification?	У	L
15.	d. All of the above ANSWER: (c) After Which of the following i a) $0 \ge 20 \log H(j\Omega) $ b) $20 \log H(j\Omega) \ge KP$ c) $20 \log H(j\Omega) \le KS$	a frequency doma	in specification?	У	L

	NADAR SARASWATI	I COLLEGE OF ENGINEERIN	G AND TEC	HNOLOGY	Y, THENI	•
Cou	rse/Branch : B.E / ECE	Year / Semester : III / V		Format No.	NAC/TLP-	-07a.13
Subj	ject Code : EC8553	Subject Name : Discrete Time Sig	nal Processing	Rev. No.	02	
Unit	: No : 2	Unit Name : Infinite Impulse Res	ponse Filter	Date	30.09.2020)
		OBJECTIVE TYPE QUESTION	BANK			
	ANSWER: D	toff fragman in tarma of stan hand a	nin 9			
16.	what is the expression for C a) $\Omega S(10-KS/10-1)1/2N$ b) $\Omega S(10-KS/10+1)1/2N$ c) $\Omega S(10KS/10-1)1/2N$ d) None of the mentioned Answer: c	tion nequency in terms of stop band §	gann :			L3
17.	The cutoff frequency of t frequencies as found abo a) True b) False Answer: a	e low pass Butterworth filter is the e.	arithmetic me	an of the tw	vo cutoff	L1
18.	 a) 4 b) 5 c) 6 d) 3 Answer: b 	The Butterworth filter with a pass nuation greater than or equal to 20c	Band gain KP= B at $\Omega S = 8$ ra	ad/sec?	P=4	L5
19.	What is the value of cheb a) 1 b) 0 c) -1 d) 2	shev polynomial of degree 0?	nolog	y		L1
20.	What is the value of cheb a) 1	shev polynomial of degree 1?				L1

	NADAR SARASWATE	II COLLEGE OF ENGINEERING AND TEC	HNULUG	Y, THENI			
Cou	rse/Branch : B.E / ECE	Year / Semester : III / V	Format No.	NAC/TLP-	07a.13		
Sub	ject Code : EC8553	Subject Name : Discrete Time Signal Processing	Rev. No. 02				
Uni	t No : 2	Unit Name : Infinite Impulse Response Filter	Date	30.09.2020			
		OBJECTIVE TYPE QUESTION BANK					
	b) x						
	c) -1						
	d) -x						
	Answer: b						
	Explanation: We know th	at a chebyshev polynomial of degree N is defined	l as				
	TN(x) = cos(Ncos-1x), x	$\leq 1 \cosh(\text{Ncosh-1x}), \mathbf{x} > 1$					
	For a degree 1 chebyshev	filter, the polynomial is obtained as					
	TO(x) = cos(cos-1x) = x	Learn					
	What is the value of cheb	yshev polynomial of degree 3?					
	a) 3x3+4x						
21	b) 3x3-4x						
21.	c) 4x3+3x Engineering Excellence for Empowerment						
	d) 4x3-3x						
	Answer: d	anaswathi Collogo	nf				
	Chebyshev polynomials of	f odd orders are	ui				
	a) Even functions	eering & Technolog	V				
	b) Odd functions						
22.	c) Exponential functions						
	d) Logarithmic functions						
	Answer: b						
	Which of the following ru	le is used in the bilinear transformation?					
23.	a) Simpson's rule				L1		
	b) Backward difference				-		

Cou	rse/Branch	: B.E / ECE	Year / Semester : III / V	Format No	NAC/TLP	-07a.13
Subj	ect Code	: EC8553	Subject Name : Discrete Time Signal Processing	Rev. No.	02	
Unit	No	: 2	Unit Name : Infinite Impulse Response Filter	Date	30.09.2020)
			OBJECTIVE TYPE QUESTION BANK			
	c) Forwar	d difference				
	d) Trapez	oidal rule				
	Answer: d	l				
	Which of t	he following su	bstitution is done in Bilinear transformations?			
	a) $s = 2T[1]$ b) $s = 2T[1]$	+z-11-z1 +z-11+1				
24.	c) $s = 2T[1]$	-z-11+z-1]				L5
	d) None of	the mentioned				
	Answer: c					
	In bilinear a) Entirely	transformation,	the left-half s-plane is mapped to which of the followin t circle $ z =1$	g in the z-d	omain?	
	b) Partially	outside the un	it circle z =1			
 25. c) Partially inside the unit circle z =1 d) Entirely inside the unit circle z =1 						L
	d) Entirely	inside the unit				
	Answer: d	077.51				
	a) True	$\operatorname{on} s = 21[1-z-$	11+z-1] is a true frequency-to-frequency transformation	1.		
26.	b) False					L1
	Answer: a		eering Excellence for Empowerment			
	If $s=\sigma+j\Omega$	and z=rejw, the	n what is the condition on σ if r<1?	·		
	a) $\sigma > 0$ b) $\sigma < 0$		-			
27.	c) $\sigma > 1$	ladar	Saraswathi Enllene	nt		L2
	d) σ < 1		our contain buildge	-		
	Answer: b	Enni	popring & Technolog	W.		
	What is the a) 1Ttan(O	e expression for	the digital frequency when r=1?	Y .		
	b) $2Ttan(\Omega)$	2T2)				
28.	c) 1Ttan-1	$(\Omega T2)$				L3
	u) 21 tali 1	(3212)				
	Answer: d	a lind of volot	ionship hotseon O and a?			
	vv nat 1s th	e kina of relat	ionsinp between 22 and 66?			
	a) Many-t	o-one				
29.	h) One-to-	many				L1
	5, 010-10					
	c) One-to-	one				

	NADAR SARASWAT	HI COLLEGE OF ENGINEERING AND TECH	HNOLOGY	Y, THENI	•	
Cou	rse/Branch : B.E / ECE	Year / Semester : III / V	Format No.	NAC/TLP-	-07a.13	
Sub	ject Code : EC8553	Subject Name : Discrete Time Signal Processing	Rev. No.	02		
Uni	t No : 2	Unit Name : Infinite Impulse Response Filter	Date	30.09.2020)	
		OBJECTIVE TYPE QUESTION BANK	I			
	d) Many-to-many					
	Answer: c					
	What is the first backwar	d difference of y(n)?				
	a) [y(n)+y(n-1)]/T					
	b) [y(n)+y(n+1)]/T					
30.	c) [y(n)-y(n+1)]/T				L2	
	d) [v(n)-v(n-1)]/T					
	Answer: d					
	The s plane and z p	lane are related as				
	a. $z = e^{sT}$					
31.	b. $z = e^{2sT}$					
	c. $z = 2e^{sT}$					
	a. $z = e^{-7/2}$	sT				
	What is the center of the ϕ	circle represented by the image of j Ω axis of the s-do	main?			
	a) z=0					
	1) 0.5					
32.	b) z=0.5				L3	
	c) z=1					
	d) none of the mentioned					
	Answer: b					
	The anti causal sequences	have components in the left hand sequences	•			
	a. Positive b. Negative					
33.	c. Both a and b				L1	
	d. None of the above					
	ANSWER: (a) Positive		h 1	0		
	what is the radius of th	e circle represented by the image of J22 axis of t	ne s-domai	u l (
34	a) 0.75				L2	
2	b) 0.25					

Prepared By: Mrs.T.TAMIL SELVI

	NADAR	SARASWAT	HI COLLEGE ()F ENGINEERING AND	TECHNOLO	JGY, THEN	l
Cou	rse/Branch	1 : B.E / ECE	Year / Semeste	r : III / V	Format No.	NAC/TLF	P- 07a.13
Subj	ject Code	: EC8553	Subject Name	: Discrete Time Signal Proce	essing Rev. No	. 02	
Jnit	No	: 2	Unit Name : I	nfinite Impulse Response Fi	lter Date	30.09.202	0
			OBJECTIVE	TYPE QUESTION BANK			
	c) 1						
	d) 0.5						
	Answer	d					
	An analo	g high pass filt	ter can be mapp	ed to a digital high pass fi	lter.		
	a) True						
35.	h) Eslas						L1
	b) Faise						
	Answer:	b					
		Ladar Engin	Sarasy Ieering	wathi Colley 8 Technol	ge of ogy		