

NSCET E-LEARNING PRESENTATION LISTEN ... LEARN... LEAD...

ELECTRONICS & COMMUNICATION ENGINEERING

IV YEAR / VIII th SEMESTER

EC 6018 – MULTIMEDIA COMPRESSION & COMMUNICATION

S.PRATHAP M.E., Assistant professor Nadar Saraswathi College of & Technology, Vadapudupatti, Annanji (po), Theni – 625531.

Digital Audio

Human auditory system is much more sensitive to quality degradation then is the human visual system

□ redundancy is relatively small

□ can achieve lower compression ration than for digital video

Digital audio stream

2 dimensions: amplitude x time

c.f.) video stream: 3 dimensions

Differential PCM

Department of ECE, NSCET, Theni

Third order predictive coding
? Compute difference from
last 3 predictive value
? Predictor coeffciet value:
0.5, 0.25, 0.25
? 32kbps

Department of ECE, NSCET, Theni

Variants of PCM

Basic compression in digital telephony: (G.711)

□ A-law transformation: 13 bits □ 8 bits (Europe)

 \Box \Box -law transformation: 14 bits \Box 8 bits (North-America)

□ Non-liner quantization

□ greater accuracy in low-amplitude samples

Differential PCM

□ 8bit □ 6bit

ADPCM (G.721)

 \Box adapts to the characteristics of signals, by

□ changing quantization step size

□ prediction

 \Box 8bits \Box 4 bits

Adaptive predictive coding (ADC)

□ Predictor coefficients are continuously changed

Linear predictive coding (LPC)

- □ Exploit perceptual features
- □ Pitch: ear is more sensitive to 2-5kHz
- □ Period: duration of signal
- Loudness: energy of signal
- Code-excited LPC (CELP)
- □ Use waveform template
- □ G.728 16kbps 0.625ms low bit rate telephony
- □ G.729 8kbps 25ms cellular network
- □ G.729(A) 8kpbs 67.5ms digital simultaneous
- voice and data
- □ G.723.1 5.3/6.3kbps 67.5ms video/Intenet telephony

Department of ECE, NSCET, Theni

Psycho-Acoustics

- Human hearing and voice
 - Audible tone: 15 Hz 20 KHz
 - Most sensitive at 2KHz to 5 KHz
 - Dynamic range (quietest to loudest) is about 96 dB
 - Normal voice range is about 500 Hz to 2KHz
- Low frequencies are vowels and bass
- High frequencies are consonants

Hearing threshold of human hear

Department of ECE, NSCET, Theni

Frequency Masking

Department of ECE, NSCET, Theni

Frequency Masking

□ A strong audio signal makes a spectral neighborhood of weaker audio signals imperceptible

□ The threshold at any given frequency is dependent on the signal activity within a critical band of that frequency

Department of ECE, NSCET, Theni

Critical Bands

- Perceptually uniform measure of frequency
- Bark
- 🛛 new unit for frequency
- 2 1 Bark = width of one critical band
- If for frequency < 500 Hz, 1 Bark = freq/100

Masking Thresholds on critical band scale

Department of ECE, NSCET, Theni

Temporal Masking

• If we hear a loud sound, then it stops, it takes a little while until we can hear a soft tone nearby.

Department of ECE, NSCET, Theni

MPEG Audio

- Lossy compression but perceptually lossless
- Identify and remove perceptually irrelevant parts of the audio signals
- 2 exploiting limitation of human audible system
 - hearing threshold, auditory masking
- MPEG-1 Audio
 - supports 1 or 2 audio channels
- MPEG-2 Audio

I up to 5 channels (left, right, center, 2 surrounding)

- 🛛 a low-frequency enhancement channel
- D up to 7 commentary/multilingual channels
- Disckward compatible with MPEG-1

MPEG-1 Audio

- Divide audio signals into frequency subbands that approximates critical subbands
- For each subband (bandwidth = 500Hz) sample and accumulate 12 successive set of 32 samples
- 12 x 32 PCM samples
- Quantize each subband according to the audibility of quantization noise
- to make quantization noise in audible
- Adaptive bit allocation
- to control the spectral properties of the noise as a function of a signal so that the noise remains
- imperceptible
- Uses Psycho-Acoustic modeling

Department of ECE, NSCET, Theni

Department of ECE, NSCET, Theni

MPEG Audio Layers

- Higher layer must be able to decode audio signals of lower layers
- Layer I
 - DCT type filter with one frame and equal frequency spread per band. (32 constant-width frequency bands)
 - > Psychoacoustic model only uses frequency masking.
 - Sampling rates used
 - 32ksps for broadcast communication equipment
 - 44.1ksps for CD-quality audio equipment
 - 48ksps for professional sound equipment
- Layer II
 - > Use 3 frames in filter. This models temporal masking.
- Layer III
 - > Better critical band filter is used(non-equal frequency).
 - Psychoacoustic model : temporal masking effects
 - Stereo redundancy, Huffman coder

Dolby Audio Coders

- Dolby AC-1 (Acoustic coder)
 - Designed for use in satellites to relay FM radio and TV
 - Pix bit allocation
 - 2 40 subbands at 32ksps, 44.1ksps, 48ksps
 - I Typical compressed bit rate: 512kbps for stereo
- Dolby AC-2
 - Designed for PC sound cards
 - I Hi-fi quality at a bit rate of 256kbps
- Dolby AC-3
 - Designed for a similar range of MPEG audio standards
 - I HDTV standard in North America
 - 2 32 / 44.1 /48ksps
 - I 192kbps for stereo

Video Compression Standards

- JPEG: ISO and ITU-T
 - for compression of still image
- Moving JPEG (MJPEG)
- H.261: ITU-T SG XV
 - ➢ for audiovisual service at p x 64Kbps
- MPEG-1, 2, 4, 7: ISO
- IEC/JTC1/SC29/WG11
 - > for compression of combined video and audio
- H.263: ITU-T SG XV
 - for videophone at a bit-rate below 64Kbps
- JBIG: ISO
 - for compression of bi-level images

History of Video Compression Standards			
Year	Standard	Publisher	Popular Implementations
1984	H.120	ITU-T	
1990	H.261	ITU-T	Videoconferencing, Videotelephony
1993	MPEG-1 Part 2	ISO, IEC	Video-CD
1995	H.262/MPEG-2 Part 2	ISO, IEC, ITU-T	DVD Video, Blu-ray, Digital Video Broadcasting, SVCD
1996	H.263	ITU-T	Videoconferencing, Videotelephony, Video on Mobile Phones (3GP)
1999	MPEG-4 Part 2	ISO, IEC	Video on Internet (DivX, Xvid)
2003	H.264/MPEG-4 AVC	ISO, IEC, ITU-T	Blu-ray, Digital Video Broadcasting, iPod Video, HD DVD

Compressing Digital Video

- Exploit *spatial redundancy within frames (like JPEG:* transforming, quantizing, variable length coding)
- Exploit temporal redundancy between frames
 - Only the sun has changed position between these 2 frames

Thank You

